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ABSTRACT
This chapter describes CyGraph, a system for improving network security posture,

maintaining situational awareness in the face of cyberattacks, and focusing on protec-

tion of mission-critical assets. CyGraph adopts a unified graph-based cybersecurity

model relevant to potential and actual cyberattacks, defenses, and mission impacts. It

captures incremental attack vulnerability, security events, and mission dependencies

within a network environment, builds a predictive model of possible attack paths and

critical vulnerabilities, and correlates events to known vulnerability paths. It also

includes dependencies among mission requirements and network assets, for analysis

in the context of mission assurance. The resulting knowledge graph captures the com-

plex relationships among entities in the cybersecurity domain. CyGraph brings together

isolated data and events into an overall picture for decision support and situational

awareness. It prioritizes exposed vulnerabilities, mapped to potential threats, in the con-

text of mission-critical assets. In the face of actual attacks, it correlates intrusion alerts

to known vulnerability paths and suggests best courses of action for responding to

attacks. For postattack forensics, it shows vulnerable paths that may warrant deeper

inspection. CyGraph also supports CyQL (CyGraph Query Language), a domain-

specific query language for expressing graph patterns of interest, with interactive visu-

alization of query results. To help manage visual complexity, CyGraph supports the

separation of graph models into interdependent layers. For time-dependent graph mod-

els, it provides dynamic visualization of evolving graph state. CyGraph also integrates

with third-party tools for visualizing graph state changes (e.g., driven by simulations).

Furthermore, it has capabilities for synthesizing graph models with particular statistical

properties.

Keywords: Cybersecurity modeling, Situational awareness, Mission assurance attack

graphs, NoSQL graph databases, Graph visualization
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1 INTRODUCTION

Cyberattacks and defenses against them are conducted in complex environments,

with numerous factors contributing to attack success and mission impacts.

Network topology, host configurations, vulnerabilities, firewall settings, intru-

sion detection systems, mission dependencies, and many other elements can play

parts. To go beyond rudimentary assessments of security posture, organizations

need to merge isolated data into higher-level knowledge of network-wide attack

vulnerability and mission readiness in the face of cyber threats.

Network environments are always changing, with machines added and

removed, patches applied, applications installed, firewall rules changed, etc.,

all with potential impact on security posture. Intrusion alerts and antivirus

warnings need attention, and even seemingly benign events such as logins,

service connections, and file share accesses may be associated with adversary

activity.

The problem is often not lack of available information, but rather the ability

to assemble disparate pieces of information into an overall picture for situa-

tional awareness, optimal courses of action, and maintaining mission readiness.

Security analysts and operators can be overwhelmed by a variety of consoles

from multiple tools; each tool provides only a limited view of one aspect of

the overall space under consideration. Tools such as security information and

event management (SIEM) can help by normalizing data and bringing it

together under a common framework. But the data still remain as individual

pieces of information, rather than a comprehensive model of network-wide

vulnerability paths, adversary activities, and potential mission impacts.

Our goal is to maximize the ability to discover potential threats and mission

impacts, while minimizing the time needed for organizing multiple disparate

data sources into meaningful relationships. For example, in the well-publicized

Target retailer data breach (Harris and Perlroth, 2014), it was revealed that

cyber defenders were actually aware of an alert for a particular aspect of the

attack, but decided that it was a false positive. We could surmise that if those

defenders understood the potential downstream ramifications of that alert, they

would have considered it much more carefully, preformed additional investi-

gations, etc. The goal is to provide the higher-order correlations that defenders

need for truly informed decisions.

For the Target data breach, the attack began with a compromise within a

partner (contractor) network. A common way for this to happen is through

Trojan malware. Alerts for such malware are happening with high frequency

in many environments and are often considered a low business risk (i.e.,

mainly a risk for individual clients). However, in the case of the Target

breach, the infected host in the contractor became a launching point into the

Target network. Several other steps were part of the breach, in which the

attackers incrementally increased their scope of control, until they met their

attack goals (exfiltrating large-scale credit card data).
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The key lesson is that there were multiple attack steps, with multiple

corresponding opportunities for detection. However, such alerts and other

indicators occur within a large background of event noise. Since it is not prac-

tical for human defenders to consider all the possible multistep inferences, this

needs to be automated. Also, defenders can make even more informed deci-

sions (and reduce numbers of truly critical incidents to consider) by focusing

such inference on mission-critical network assets. This can also be done pre-

emptively, to discover and reduce such critical vulnerability paths.

To help address these challenges, we introduce CyGraph, a tool for cyber

warfare analytics, visualization, and knowledge management. CyGraph brings

together isolated data and events into an ongoing overall picture for decision

support and situational awareness. It prioritizes exposed vulnerabilities,

mapped to potential threats, in the context of mission-critical assets. In the

face of actual attacks, it correlates intrusion alerts to known vulnerability

paths and suggests best courses of action for responding to attacks. For post-

attack forensics, it shows vulnerable paths that may warrant deeper inspection.

CyGraph builds an attack graph model that maps the potential attack paths

through a network. This includes any network attributes that potentially con-

tribute to attack success, such as network topology, firewall rules, host config-

urations, and vulnerabilities. The dynamically evolving attack graph provides

the context for reacting appropriately to attacks and protecting mission-critical

assets. CyGraph then ingests network events such as intrusion detection alerts

and other sensor outputs, including packet capture. It also incorporates mis-

sion dependencies, showing how mission objectives, tasks, and information

depend on cyber assets.

CyGraph fuses information from a variety of data sources to build its uni-

fied graph-based model. As shown in Fig. 1, this is a layered model, which

includes the comprehensive information needed for making informed judg-

ments about mission readiness in the face of cyber warfare.

The network infrastructure layer captures how the network is segmented

and organized topologically, the locations of sensors, etc. The cyber posture
layer considers elements within the network infrastructure that might impact

cyberattacks/defenses, e.g., host configurations, vulnerabilities, services,

shared resources, firewall policies, etc. The cyber threats layer describes

potential adversary threats, for application against the defensive posture. This

includes threat intelligence (e.g., shared among trusted partners) as well as

event streams of alerts and other behavioral indicators. Finally, the mission
dependencies layer captures dependencies among various mission compo-

nents (from high-level objectives to tasks that support objectives to informa-

tion required for task, etc.), as well as the particular cyber assets that

support the mission components.

CyGraph has the potential for dramatically shortening the analytical cycle.

It provides the network-specific context needed for mapping cyber threats to

specific network environments, reducing false alarms, and suggesting optimal

CyGraph: Graph-Based Analytics and Visualization for Cybersecurity 3

ARTICLE IN PRESS



attack responses. It helps prioritize exposed vulnerabilities, alone and in com-

bination, with focus on protecting mission-critical assets against potential

threat sources. It also provides the context for correlating intrusion alerts

and other kinds of network events, matching them to known vulnerability

paths. This in turn suggests best courses of action for responding to attacks.

Specifically, for postattack situational awareness, CyGraph shows possible

paths leading up to the current attack locus (backward looking) as well as

potential paths for the attacker to advance the attack (forward looking). It also

provides a comprehensive framework for computing a variety of metrics for

tracking security readiness over time.

CyGraph provides comprehensive query capabilities over its graph knowl-

edge base, including a query language specific to its knowledge domain. This

supports a range of cyber analysis tasks, such as mapping an attacker’s poten-

tial reach and combining isolated alerts into coordinated multistep attack cam-

paigns. CyGraph also provides a variety of interactive visualization

capabilities for portraying complex graph query results.

Section 2 discusses previous work related to the CyGraph system. Section 3

then describes CyGraph in more detail. In Section 4, we examine a number of

example applications of CyGraph. Section 5 then summarizes this chapter.

2 RELATED WORK

Traditionally, the development of cybersecurity models and analytics has

been hampered by a lack of information sharing. MITRE’s Making Security
Measurable (Martin, 2008; The MITRE Corporation, 2013) is a collection

of collaborative initiatives for shared information, languages, and processes

FIG. 1 CyGraph knowledge stack.
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for cybersecurity that has helped in that regard. These initiatives encompass

software assurance, threat analysis, vulnerability management, malware pro-

tection, intrusion detection, incident coordination, and other areas of security.

Collaborators include teams from US Department of Homeland Security

(DHS), Defense Information Systems Agency (DISA), National Institute of

Standards and Technology (NIST), Internet Engineering Task Force (IETF),

and many others from government, academia, and industry (The MITRE

Corporation, 2014). These standardization efforts facilitate information shar-

ing needed for building CyGraph knowledge graphs. Also helpful are a vari-

ety of ontologies and taxonomies that have been proposed for the

cybersecurity domain, e.g., Iannacone et al. (2014).

On the product side, various tools for attack graph analysis are available,

both Government Off-The-Shelf (GOTS) and Commercial Off-The-Shelf

(COTS). GOTS examples include TVA (Jajodia et al., 2005) (commercialized

as Cauldron (NSA, 2009)) and NetSPA (Artz, 2002) (commercialized as

CyberAnalytix, 2008). Other COTS tools include Skybox (2016) and

RedSeal (2016). Attack graphs have also been generated by logic program-

ming (Ou et al., 2005) and model checking (Sheyner and Wing, 2004). More

comprehensive reviews of previous work in attack graphs and other graph-

based cybersecurity models are given in Lippmann and Ingols (2005) and

Schweitzer (2013).

Previous approaches and tools for attack graph analysis have generally

employed specialized data structures and algorithms designed for solving spe-

cific problems, e.g., attack reachability (Ingols et al., 2006), data aggregation

(Noel and Jajodia, 2009a), network hardening (Albanese et al., 2012), sensor

placement (Noel and Jajodia, 2007), alert correlation (Ning and Xu, 2004),

security posture metrics (Noel and Jajodia, 2014), or risk of unknown (zero-

day) vulnerabilities (Wang et al., 2013). Flexibility and extensibility in the face

of evolving network environments and adversary threats have not been first-

class design criteria. For example, TVA/Cauldron lacks a database persistence

layer, and changing the model (new vulnerability scans, firewall rule changes,

etc.) requires the entire attack graph to be rebuilt. Such tools are usually imple-

mented with custom code that is difficult to extend as new data sources, model

abstractions, analytic techniques, and visualization capabilities are introduced.

Relational database representations have been proposed for attack graphs

(Wang et al., 2006). While this has the advantage of a standard model for data

representation and queries, the relational model is not the best match for graph

problems, especially for evolving network environments and analytic require-

ments. Extending a relational model requires schema redesign, database

reloading, etc. Many graph operations are difficult to express in Structured

Query Language (SQL). Moreover, graph traversal in relational databases

requires computationally expensive self-join operations.

A class of NoSQL databases known as graph databases has emerged,

which are optimized for graph operations. In CyGraph, we employ the Neo4j
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graph database (Neo4j, 2016). Neo4j represents node adjacency via direct

pointers, which avoids expensive join operations for graph traversal. Neo4j

has demonstrated graph traversal performance orders of magnitude better than

relational databases (Baas, 2012; Batra and Tyagi, 2012). Query execution

times depend only on the size of the traversed subgraph, independent of the

size of the overall graph (Robinson et al., 2015).

Many of the problems in big data are amenable to established methods of

high-performance computing (HPC), so that boundaries between big data and

HPC are blurring (Nadkarni and Vesset, 2014). Graph data structures lack the

spatial locality implicit in traditional HPC architectures (e.g., for data arrays).

To address this, Cray has developed the Urika-GD™ appliance (Cray, 2014),

which has specialized hardware and software for high-performance large-

scale graph analytics.

3 DESCRIPTION OF CyGraph

CyGraph is a comprehensive, scalable, high-performance system for analyz-

ing and reasoning about network attack relationships. It correlates data from

numerous sources (topology, vulnerabilities, client/server configurations, fire-

wall rules, events, etc.) into a common, normalized model and builds a persis-

tent graph data store representing network attack relationships and associated

network data. CyGraph supports queries that identify key vulnerabilities, sug-

gest optimal mitigation strategies, map host-to-host trust relationships, show

downstream/upstream paths for attack response, etc. The system includes

components to compute analytical graph-theoretic measures such as central-

ity, degree, connectivity, and diameter. It also provides interactive visualiza-

tion capabilities for conveying complex dependency relationships.

Section 3.1 describes the overall architecture of the CyGraph tool.

Section 3.2 explains in detail about the variety of data sources that CyGraph

ingests for building its cyber graph models. Section 3.3 describes how

CyGraph leverages NoSQL graph databases within an integrated environment

for big data analytics, for synthesizing its graph knowledge base from raw

data. Section 3.4 examines details of CyGraph’s distributed client–server
implementation. In Section 3.5, we introduce a domain-specific query lan-

guage for CyGraph, which provides a level of abstraction that hides lower-

level details of the underlying CyGraph data model. Section 3.6 examines a

variety of interactive visualization capabilities in CyGraph that help analysts

better understand and communicate knowledge base query results.

3.1 CyGraph Architecture

Fig. 2 is a high-level view of the CyGraph architecture. The architecture

includes REpresentational State Transfer (REST) web services for ingest,

transform, and analytics (queries and visualization). CyGraph ingests data
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from a variety of sources at all layers of its cyber knowledge stack, mapping

source-specific data to a common normalized data model. It then transforms

the isolated elements of the normalized model into a graph model that cap-

tures relevant relationships for the cybersecurity and mission dependence

domains. CyGraph also provides a variety of client-side analytic and visual

capabilities, including graph dynamics, layering, grouping, filtering, and

hierarchical views.

In the CyGraph architecture, the cybersecurity model schema is free to

evolve with the available data sources and desired analytics, rather than being

fixed at design time. The data model is based on a flexible property-graph for-

mulation implemented in Neo4j. Model extensions are simply the creation of

additional of nodes, relationships, and properties in the property-graph data

model and require no schema changes or other database renormalizing. Graph

pattern-matching queries are expressed in either native Neoj4 query language

(Cypher) or our domain-specific CyGraph Query Language (CyQL), which

CyGraph compiles to native Cypher.

3.2 CyGraph Data Sources

In the CyGraph architecture, the ingest service provides a standard format for

input data, which is processed by source-specific adapters. Thus, data “in the

wild” are mapped to the layered CyGraph data model. The network infrastruc-

ture layer of this model captures the configuration and policy aspects of the

network environment, which forms the basis for modeling security posture

(potential vulnerability paths). The cyber threats layer captures events and

indicators of actual cyberattacks, which are correlated with elements at the

FIG. 2 CyGraph architecture.
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lower levels, providing context for cyber events and supporting predictions of

subsequent attack spread. The mission dependencies layer shows how cyber

activities relate to mission elements.

Fig. 3 shows example data sources for building CyGraph models. These

provide elements of CyGraph’s cybersecurity/mission knowledge stack. In

this way, CyGraph leverages existing tools and data sources for building its

rich knowledge graph.

First we consider data sources pertaining to network infrastructure and

cyber posture, i.e., network topology, firewall rules, and host vulnerabilities.

In CyGraph, we leverage TVA/Cauldron (Jajodia et al., 2011; Noel and

Jajodia, 2009b; Noel et al., 2002, 2009; O’Hare et al., 2008), a tool developed

at George Mason University for building and analyzing network attack

graphs. TVA/Cauldron imports scan results from various vulnerability scanner

products. It also parses firewall rules (access control lists) from various fire-

wall vendors. It then analyzes host vulnerabilities, firewall rules, and network

topology (subnets, routes, and firewall locations) to enumerate attacker reach-

ability to vulnerable hosts. This in turn provides a model for network infra-

structure and security posture in CyGraph. The security posture layer of

CyGraph’s knowledge stack supports prioritization and optimization of proac-

tive security measures in advance of attack. This layer also provides context

for responding to attacks.

In addition to source data about network infrastructure and cyber posture,

CyGraph ingests various data sources for cyber threats, both potential (threat

intelligence) and actual (cyberattack events). The Splunk log analysis tool

(Zadrozny and Kodali, 2013) indexes data from network- and host-based sen-

sors, e.g., intrusion detection systems and other specialized tools providing

live threat indicators. CyGraph also processes packet capture data via Wire-

shark (Sanders, 2011), e.g., for analyzing general traffic patterns. Cyber threat

intelligence sources for CyGraph include the National Vulnerability Database

(NVD) (2016), Structured Threat Information eXpression (STIX™) (STIX,

2016), and Common Attack Pattern Enumeration and Classification

FIG. 3 Example sources for CyGraph data ingest.
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(CAPEC™) (The MITRE Corporation, 2016). Threat Assessment and Reme-

diation Analysis (TARA) (Wynn et al., 2011) provides a structured methodol-

ogy for elements of both cyber posture and threats.

Through its mission dependencies layer, CyGraph supports analysis of

potential and actual impact of cyberattacks and defenses on organizational

functions (missions). To populate this layer, CyGraph leverages established

methodologies and tools (Noel and Heinbockel, 2015). This includes Crown

Jewels Analysis (CJA) (The MITRE Corporation, 2009), which is a structured

methodology for identifying mission-critical cyber assets. It also includes

Cyber Command System (CyCS) (The MITRE Corporation, 2016), a tool that

captures hierarchical dependencies among mission components, and maps mis-

sion operations to the network operations that support them. CyGraph can also

leverage Cyber Mission Impact Assessment (CMIA) (Musman et al., 2011),

which evaluates time-dependent effects of cyberattacks on mission effective-

ness and performance.

In the CyGraph framework, the data model is schema free, so that the

model is decoupled from the storage implementation. This provides flexibility

in data sources, and how the data are transformed (cast as a graph) determines

a particular instantiated CyGraph model. User queries must match a given

instantiation. This means that there is a knowledge engineering phase in

developing source-specific adapters for populating CyGraph instances, and

for formulating relevant queries according to the graph model.

3.3 Big Data Analytics in CyGraph

Big data analytics involve a process of continual discovery. CyGraph dis-

covers interrelationships relevant to attacker progress through a network and

corresponding mission impact. This includes vulnerabilities in the usual sense,

as well as other attack relationships that enable attacker progress, such as

remote desktop and stored credentials. Network events (alerts, flows, etc.)

are mapped to these attack relationships, providing context for correlating oth-

erwise isolated events. This shows the next steps that an adversary can take,

for optimal response by defenders.

This kind of complex, interconnected, unpredictable data is best captured

in a graph model (data structure). Relational databases work well for referen-

cing discrete data items and fixed relationship patterns, e.g., bank customers

and their accounts. But the relational model has difficulties when the relation-

ships themselves are variable, especially as in cyber security.

Graph databases are a class of NoSQL database (Gudivada et al., 2016)

that embraces graphs as the underlying model for data representation and stor-

age (Angles and Gutierrez, 2008). They often employ semantic (pattern-

matching) query languages, which allows retrieval of both explicitly defined

information as well as information that can be implied (e.g., through graph

traversal). They are applicable when the information about data relationships
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is as important (or even more important) as the data themselves. A survey of

popularity trends for various classes of databases (Andlinger, 2015) shows

that graph databases have had a fivefold increase in popularity over the last

2 years (ending March 2015), a much higher growth rate than any other class

of database.

Within the graph database class, Neo4j dominates popularity (DB-

Engines, 2015). Neo4j is open source, with commercial licensing for an enter-

prise version also available (Neo4j, 2016). Unlike most NoSQL databases,

Neo4j enforces ACID (atomicity, consistency, isolation, durability) transac-

tion properties usually associated with relational database systems.

Graph databases represent node adjacency via direct pointers. This avoids

expensive join operations or other index lookups for graph traversal. Graph

databases have been shown to be orders of magnitude faster than relational

databases for graph traversal, especially deeper traversals (Vukotic et al.,

2015). In Neo4j, graph traversal speed depends only on the size of the query

result actually traversed, independent of the total size of the graph.

CyGraph is deployed in the MITRE Cyber Analytic Virtual Environment

(CAVE), shown in Fig. 4. CAVE provides an integrated, scalable, fault-

tolerant, and managed virtual environment for big data analytics. It hosts a

suite of cyber data repositories, knowledge bases, and analysis engines, as

well as capabilities for querying and visualization.

FIG. 4 CAVE stack for big data analytics.
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CyGraph synthesizes new network, cyber, and mission knowledge, which

is stored in CAVE’s knowledge base. In the analytics layer, CyGraph provides

graph-based data cataloging, correlation, analytics, and queries. At the top of

this big data analytics stack, CyGraph provides novel forms of interactive

visualization.

3.4 CyGraph Client–Server

The CyGraph architecture is based on a distributed client–server model, parti-

tioning tasks between service providers (servers) and service requesters (cli-

ents). CyGraph clients and servers can be deployed on separate hosts (real

and/or virtual) or can be configured to run on a single (local) host. Typically,

CyGraph services (middle-tier server and backend database) are implemented

as separate virtual machine instances, i.e., in VMware (2016). Such a VMware

instance can also be migrated to Amazon Elastic Compute Cloud (Amazon

EC2) (Amazon Web Services, 2016) for web-scale cloud computing.

Here are the functional roles for each tier of the CyGraph client–server
architecture:

CyGraph Client: The CyGraph Client is a graphical user interface for pos-

ing CyGraph queries and visualizing query results. The client communi-

cates with the CyGraph Server through RESTful web application

program interface (API) calls. The predominant CyGraph Client is imple-

mented in Java as a desktop application. Because of the decoupled client–
server architecture, other clients can be implemented on other platforms,

e.g., a web browser.

CyGraph Server: The CyGraph Server acts as a middle-tier intermediary

between the CyGraph Client and the CyGraph Database. It provides a

layer of abstraction that gives a common service interface, regardless of

the how the database backend (and its native query language) is imple-

mented. The server handles the interpretation of CyGraph domain-specific

query language (CyQL) into native database queries. The server also

houses a library of commonly issued queries, to capture domain knowl-

edge, streamline the analytic workflow, and help ease the learning curve

for new analysts.

CyGraph Database: The CyGraph Database stores the graph data (nodes,

relationships, and properties). It processes queries from CyGraph Server,

in the native language of the database implementation (Neo4j).

Fig. 5 shows the key components for the implementation of each tier of the

CyGraph client–server architecture. A key library for CyGraph Client is

GraphStream (Dutot et al., 2007), which provides basic functions for graph

visualization, styling, and user interaction. CyGraph Server leverages the

Spring web model-view-controller (MVC) framework (Yates et al., 2006),

which separates the representation of information from how that information
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is presented to the user. CyGraph Server also applies ANTLR (ANother Tool

for Language Recognition) (Parr, 2013) for translating queries in the CyGraph

domain-specific query language (CyQL) to corresponding queries in a native

graph database query language. CyGraph Client and CyGraph Server also

leverage Jersey RESTful web services (Gulabani, 2014) for connecting to

CyGraph services via Hypertext Transfer Protocol (HTTP).

In the CyGraph architecture, the analyst formulates a graph pattern-matching

query in CyGraph Client (in either domain-specific CyQL or native Neo4j

Cypher query language) and submits it. CyGraph Client wraps the query in a

JSON message and sends it to the corresponding service (CyQL or Cypher) on

CyGraph Server. CyGraph Server processes the query and sends it to CyGraph

Database. For a CyQL query, CyGraph Server translates (compiles) it to the

corresponding Cypher query; otherwise, it just forwards the native Cypher query.

In response, CyGraph Database (backed by Neo4j) executes the Cypher

query and returns the results (matched subgraph) to CyGraph Server as Neo4j-

formatted JSON. CyGraph Server parses the Neo4j JSON, builds the

corresponding vendor-neutral CyGraph model JSON, and sends that to

CyGraph Client for rendering as dynamic graph visualization.

The loosely coupled modular design of CyGraph makes it straightforward

to develop alternative implementations for the various tiers of the client–
server architecture. For example, CyGraph clients provide alternative graph

visualization capabilities in web browsers through standards such as HTML5,

JavaScript, Cascading Style Sheets (CSS), and Scalable Vector Graphics

(SVG), by leveraging D3.js (Bostock et al., 2011), vis.js (vis.js, 2016), and

FoamTree (Carrot Search, 2016). Client-side code also exports CyGraph

models into Graphviz.

FIG. 5 Components of CyGraph client–server architecture.
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3.5 CyQL: CyGraph Domain-Specific Query Language

Graph queries in CyGraph are specifications for matching subgraph patterns

of interest, written in declarative query language (Harper, 2013). In declara-

tive (nonprocedural) languages, one specifies what needs to be done (i.e.,

match a particular graph pattern) rather than exactly how to do it (checking

properties, traversing edges, etc.).

We provide an additional layer of abstraction by defining a domain-

specific language (DSL) for the CyGraph data model, which we call CyQL.
There are a number of advantages for doing this. A DSL increases the clarity

of analytic queries against our cyber data model, especially as the model

becomes more complex. CyQL does this by encoding cyber semantics into

the query language itself, encapsulating and hiding many of the constraints

that must be expressed in the native graph database queries.

While a general-purpose graph query language is broadly applicable

across all domains, CyQL is specialized to the application domain within

the scope of CyGraph. This in turn helps reduce the learning curve and

increase the productivity of security analysts and content developers using

CyGraph.

The additional layer of abstraction provided by CyQL also allows

CyGraph to support multiple backend data engine implementations, each with

their own native query language. This means that users and application soft-

ware that integrate with CyGraph interact with a single (domain-specific) lan-

guage, which is independent of the particular native query language that

implements the DSL.

Section 3.5.1 describes CyQL in more detail. Section 3.5.2 examines a

number of example CyQL queries to see the language in practice.

3.5.1 Description of CyQL

Fig. 6 shows an instance of the underlying CyQL data model, expressed as a

graph of entity (node) and relationship (edge) types. Here, properties (name–
value pairs) for nodes and edges are omitted for clarity. It is interesting that

these four data model areas (mission readiness, network infrastructure, cyber

threats, and cyber posture) are tied together by only two node types—

machines and exploits.

CyGraph (Server) compiles CyQL (DSL) queries to the native language

for our graph database implementation (Cypher for Neo4j). The CyQL lexical

analyzer and parser are generated via ANTLR (Parr, 2013). The lexical anal-

ysis groups input CyQL queries into tokens. The parser recognizes the tokens

in terms of CyQL’s grammar structure and maps them to a parse tree.

CyGraph Server then iterates over the parse tree and generates corresponding

Cypher query code.

ANTLR defines notation for specifying an input language’s grammar, in

Extended Backus–Naur Form (Information Technology, 1996). We thus

define the grammar rules for CyQL. In CyQL, each function calls returns a

CyGraph: Graph-Based Analytics and Visualization for Cybersecurity 13
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FIG. 6 Knowledge graph model for CyQL.
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matching subgraph. Optionally, we can chain multiple function calls with the

keyword “join.” Each function (optionally) takes a list of parameters (name–
value pairs). A value can be a single key-value pair with a primitive-type

value, a list of literal values for a parameter (key), or a “specifier,” which is

a list of parameters and their values (surrounded by curly braces). Function

calls cannot be nested, but specifiers can.

Fig. 7 shows the ANTLR grammar for CyQL. It defines a query as a collec-

tion of function calls (query types), such as mapping a network topology, corre-

lating intrusion alerts, or traversing exploitable vulnerability paths. Function

parameters can be used with Boolean operations (AND, OR, and NOT) to refine

a query based on node properties and relationships. These results can then be

expanded by JOINing other functions, to provide additional context. The CyQL

grammar also defines rules for parsing cyber entities such as IP addresses, address

ranges, and host names (including support for wildcard expressions).

3.5.2 Example CyQL Queries

As an example, consider a CyQL query for finding “exploit paths,” i.e.,

sequences of vulnerabilities that an adversary could exploit for lateral move-

ment through a network. These need not be simply linear chains. Rather, the

query finds all possible paths (including branches/merges) between a speci-

fied set of machines. From a security analyst’s perspective, this means

“show me how an adversary can get from these machines to those machines.”

FIG. 7 Grammar for prototype version of CyQL (CyGraph Query Language).
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While that kind of query answers the basic question about attacker reach-

ability among network machines (exploitable paths), the analyst might want

to refine the query further to provide more specific focus. For example, we

might want to only include a certain group of machines (e.g., having a common

hostname pattern) or include only those machines that have alerts for them.

On the other hand, the analyst might wish to expand a basic query by

including additional information such as vulnerabilities associated with the

machines in a set of exploitable paths. The query language should allow a rule

as simple as join vulnerabilities() such that the appropriate vulnerability sub-

graphs are joined with the corresponding machine nodes of the exploit-paths

subgraph.

The function exploitPaths() determines the structure and the types of edges

in the matching subgraph. Its arguments get compiled to an SQL-like

WHERE clause that constrains the node properties that match the query.

For the exploitPaths() function, constraining arguments include starting and

ending machines for an exploitable subgraph.

Consider this example CyQL query:

exploitPaths(start = ({subnet=1.1.3.0/24} or
{ip=[1.1.4.32, 1.1.4.33]}) and
{hostname=*-VM*}, end = {name = "DB Server"})

Here is the resulting query compiled from CyQL to Neo4j Cypher:

MATCH (start)-[r:AGAINSTjVICTIMjONjLAUNCHESjINjROUTES*]-(end)
WHERE ((start.subnet = "1.1.3.0/24" OR

start.ip IN ["1.1.4.32", "1.1.4.33"])
AND start.hostname =� " [̂a-zA-Z0-9_-]*-VM-[a-zA-Z0-9_-]*$")

AND (end.name = "DB Server")
RETURN start, r, end

The CyQL version of this query is much less verbose. It encapsulates the

knowledge of allowed relationship types (AGAINST, VICTIM, ON,

LAUNCHES, IN, and ROUTES) for subgraphs representing attack reachabil-

ity between machines. This is based on the role of those particular relationship

types in the CyGraph data model.

Fig. 8 is the resulting parse tree for this CyQL query. It shows the starting

machines as a disjunction (OR) of the specified IP addresses, combined con-

junctively (AND) with a wildcard expression for host names. The ending

machine is simply matches a particular host name.

Fig. 9 shows how this query formulation, translation, and execution hap-

pens within the overall CyGraph architecture. The analyst formulates a query

expressed in CyQL, which the client submits to the CyGraph Server. The ser-

vice parses the CyQL query, verifies the types of function parameters, trans-

lates the query to equivalent Neo4j Cypher, and submits the resulting

Cypher query to the database engine.
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CyQL’s “filter, then expand” model allows for flexible queries while

maintaining a simple and readable syntax. As an example, consider a simple

network topology query:

network()

Here is the result of compiling this CyQL query into Cypher:

MATCH (domain:Domain)-[r:ROUTES*]-(device:Device)
RETURN domain, r, device

FIG. 8 Grammar parse tree, for example, CyQL query.
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This query returns only the backbone of the network—the protection

domains and devices such as routers and switches. Endpoint machines are

not included in the resulting subgraph, but can easily be added:

network() join machines()

This compiles to:

MATCH (domain:Domain)-[r:ROUTES*]-(device:Device)
OPTIONAL MATCH (machine:Machine)
RETURN r, machine, domain, device

TheOPTIONALMATCH clause in Cypher functions similar to a LEFT JOIN in

SQL. This query returns the network backbone and all machines on the network.

An analyst may want to consider only a subset of machines. This is done

via parameters to the machines() function:

network() join machines(ip = 1.1.3.2)

MATCH (domain:Domain)-[r:ROUTES*]-(device:Device)
OPTIONAL MATCH (machine:Machine)

WHERE machine.ip = “1.1.3.2”
RETURN r, machine, domain, device

Parameters can refer to properties on the machine nodes, or on related

objects. For instance, we can include only the machines in certain domains:

network() join machines(domain = {name = DMZ}
or {name = “Data Center”})

MATCH (domain:Domain)-[r:ROUTES*]-(device:Device)
OPTIONAL MATCH (machine:Machine), (machine)-[:IN]->(domain2)

WHERE (domain2.name = "DMZ") OR (domain2.name = "Data Center")
RETURN r, machine, domain, device

FIG. 9 CyQL domain-specific query language processing in CyGraph.
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Alternatively, we might be interested in machines with known

vulnerabilities:

network() join machines(vulnerable = true)

MATCH (domain:Domain)-[r:ROUTES*]-(device:Device)
OPTIONAL MATCH (machine:Machine)

WHERE (:Vulnerability)-[:ON]->(machine)
RETURN r, machine, domain, device

This query shows vulnerable machines on the network but does not

include nodes for the vulnerabilities themselves. To add them, we join another

function:

network() join machines(vulnerable = true) join vulnerabilities()

MATCH (domain:Domain)-[r:ROUTES*]-(device:Device)
OPTIONAL MATCH (machine:Machine)

WHERE (:Vulnerability)-[:ON]->(machine)
OPTIONAL MATCH (vulnerability)-[:ON]->(machine)
RETURN r, machine, domain, device, vulnerability

Another way to expand a query is with the “!” operator. By default, CyQL

functions return the smallest subgraph that makes sense. For instance, the

machines() function returns only machine nodes, even if other types of nodes

are used in the search parameters. Adding a “!” to the end of a function name

makes it return all the nodes and relationships used in the query. As an exam-

ple, consider this query (which has no “!” operator):

machines(domain = {name=DMZ}, vulnerabilities = {name=Heartbleed})

This returns machines in the “demilitarized zone” (DMZ) that

are vulnerable to Heartbleed, but does not return the domain or

vulnerability nodes. Alternatively, this version of the query includes the “!”

operator:

machines!(domain = {name=DMZ}, vulnerabilities = {name=Heartbleed})

This returns the same machines as the first version, plus the DMZ domain

node, the Heartbleed vulnerability node, and the relationships that connect

them to the machines.

There is a difference between

machines!(vulnerabilities = {name = Heartbleed})

and

machines(vulnerabilities={name=Heartbleed})joinvulnerabilities()

in that the first query will return only one vulnerability node for Heartbleed,

while the second will include any additional vulnerabilities on Heartbleed-

vulnerable machines.
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3.6 CyGraph Interactive Visualization

In the CyGraph architecture, client applications submit queries to the

CyGraph service and process the query results. This decoupled architecture

supports various clients with a variety of interactive modalities, including ad

hoc queries, query expansion/pivoting/filtering, visual summarization, and

dynamic graph evolution over time.

Fig. 10 shows one such CyGraph analysis/visualization client. This client

allows an analyst to pose graph pattern-matching queries. The client then ren-

ders the query result (instances of a matched pattern) through interactive

graph visualization. The client also has functions for graph statistics, styling,

spatial layout, and evolution over time.

In general, adding constraints to queries (more specific patterns) yields

smaller matched subgraphs. An analytic strategy is to begin with more general

queries and then refine them as more is learned. This helps focus the analysis,

manage complexity, and improve performance.

As an example, a query against a particular graph knowledge base yields a

subgraph of 200,000 vertices and 400,000 edges, as shown on the left side of

Fig. 11. The query itself completes in only a few seconds, but the vertex posi-

tioning needed for effective visualization (as shown in Fig. 12) takes about

half an hour.a Using the same knowledge base, a more constrained graph

FIG. 10 CyGraph client-side user interface.

aThis is for a Dell Latitude E6530 laptop running 64-bit Windows 7 Enterprise, with Intel Core

i7-3720QM @ 2.60 GHz (8 logical cores, 4 physical and 2 logical per physical), and 8 GB of

memory.
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query yields a matching subgraph of 10,000 nodes and 20,000 edges, as

shown in the right side of Fig. 11. In this case, graph visualization layout com-

pletes in only a few seconds.

CyGraph clients provide a variety of ways for interacting with graph query

results. This includes filters on node and edge property values, to focus graph

visualization (matched queries) on selected criteria. Property-dependent

styling choices (e.g., node/edge size, color, transparency, edge routing, and

arrow shapes) can also be defined. For example, Fig. 13 shows configuration

dialogs for defining filter properties and background color.

CyGraph also supports visual clustering of graph nodes, based on property

values or through manual selection. This is illustrated in Fig. 14.

4 EXAMPLE APPLICATIONS

Rather than relying on fixed analytics and visualizations, CyGraph gives the

analyst the power and flexibility for crafting queries to solve the problem at

hand. Complementary to queries that discover patterns of interest, CyGraph’s

interactive visualization conveys discovered patterns in ways that help induce

faster learning and deeper understanding. This section describes a variety of

applications that benefit from CyGraph analysis and visualization, for both

real data sources as well as driven by simulations.

FIG. 12 Progression of graph visualization layout.

FIG. 11 Constraining CyGraph query results to subgraph of interest.
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FIG. 13 Defining node filter properties and background color.

FIG. 14 Clusters of related nodes.
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Section 4.1 describes query-driven analytics in CyGraph for extracting rel-

evant portions of the knowledge base for solving particular cyber operational

problems. Section 4.2 examines how CyGraph supports cybersecurity model-

ing and simulation tasks.

4.1 Cyber Analytics

CyGraph supports deep analytics within and across the layers of its knowl-

edge graph stack. This includes network infrastructure that hosts cyber attacks

and defenses, cyber posture gained by proactive network hardening in

advance of attack, cyber threats (both potential and actual) against the net-

work environment, and associated mission impacts.

Section 4.1.1 describes how CyGraph can leverage the TVA/Cauldron tool

to map vulnerability exposures across network infrastructure to assess net-

work security posture. Section 4.1.2 integrates such vulnerable attack paths

with cyber threat information and actual alerts. Section 4.1.3 shows how

CyGraph can analyze the impact of cyberattacks on an organization’s busi-

ness/mission functions. Section 4.1.4 presents a case study that illustrates a

number of CyGraph analytic capabilities.

4.1.1 Network Infrastructure and Cyber Posture

A basic capability for assessing cyber posture is to map vulnerability exposures

across network infrastructure. This helps prioritize host vulnerabilities, identify

insecure access policy rules, and show how attackers can potentially leverage

multiple vulnerabilities to incrementally penetrate a network. As shown in

Fig. 15, this analysis requires an enumeration of host vulnerabilities (e.g., from

a vulnerability scanning tool), a topology defining network segmentation and

location of firewalls, and access rules for the firewalls. For this we can leverage

the TVA/Cauldron tool, which analyzes the topology, vulnerabilities, and rules

tomap paths of exposed vulnerability across a network, known as an attack graph.

Fig. 16 shows the TVA/Cauldron attack graph for a particular network.

This has machines grouped into subnets, with edges showing exposed vulner-

abilities across subnets. Implicitly, machines within subnets (more generally

known as protection domains) have full access to one another’s vulnerabil-

ities, i.e., a fully connected subgraph.

In the TVA tool, the attack graph is visualized in a predetermined way,

with limited options for constraining the graph, e.g., attack start and goal

(highlighted green (gray in the print version) and red (dark gray in the print

version)). For managing attack graph complexity, it relies on visual aggrega-

tion, such as collapsing protection domains to single nodes to show attack

reachability at a domain level and using a single edge to represent the full

set of vulnerabilities exploitable from one host to another. In Fig. 16, all pro-

tection domains are expanded to show exploitation at the machine level. This

visualization is somewhat cluttered, even after judicious manual positioning

of machines after expanding subnet boxes, obscuring salient patterns.
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FIG. 16 TVA attack graph visualization.

FIG. 15 Network topology, vulnerabilities, and firewall rules.
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We ingest this attack graph model into CyGraph, transforming it according

to the knowledge graph model of Fig. 6. This has machine, vulnerability, and

domain node types, and their corresponding relationship (edge) types. Then

for analysis, a naı̈ve initial query (requiring no knowledge of the underlying

data model) could be simply “MATCH ()-[r]->() RETURN r.” This pattern

matches all relationships, yielding the full knowledge graph in Fig. 17. Note

that this visualization shows all model relationships in full detail, including

those that are aggregated or implicit in Fig. 16. Still, some key patterns are

apparent, e.g., two machines (1.1.105.244 and 1.1.4.176), and to a lesser

degree another one (1.1.52.244) that have the most extensive attack reachabil-

ity (to exploitable vulnerabilities to other machines).

In CyGraph, queries can be successively refined (constrained) to focus the

analytic results. For example, the details of the particular vulnerabilities might

be less important than the attack relationships among the machines themselves.

In this case, we can pose the query “MATCH ()-[r:ACROSSjIN]->() RETURN r.”
This pattern constrains relationships to only those linking machines across pro-

tection domains (ACROSS) and machine memberships within domains (IN).

This yields the resulting matched subgraph in Fig. 18. This clearly shows the

strong dominance of 1.1.105.244, 1.1.4.176, and 1.1.52.244, along with their

reachable machines in common. The domain membership relationships show

potential victim machines that are not directly exploitable across domains, but

can be exploited with only one additional attack step.

For prioritizing vulnerabilities, an important strategy is to focus on those

that are exposed across protection domains (Noel and Jajodia, 2014). In our

model, that corresponds to the query “MATCH ()-[r:ACROSS]->() RETURN r.”
This yields the matched subgraph in Fig. 19, which just shows machines that

can directly attack across protection domains. This clearly highlights the

machines with heavy access to vulnerabilities, and the vulnerable machines

that they can reach. In this figure (as for Figs. 17 and 18), edge directionality

has arrow heads narrow and arrow tails wide.

This simple example illustrates some important properties of the CyGraph

approach. In general, the cyber posture layer can be populated with any rela-

tionships capturing potential attacker advantages (at all layers of the network

stack; Ritchey et al., 2002), e.g., host inventory agents mapped to reported

vulnerabilities (Noel et al., 2009).

In more traditional cybersecurity tools, the analytic and visual behaviors

are determined at design time and built into code. In CyGraph, the model

structure is driven by the data sources and how they are transformed into a

graph knowledge base. Then, given some understanding of the underlying

knowledge model, the analyst can construct ad hoc queries to fine-tune ana-

lytic results. As we show in subsequent sections, we can enrich the graph

knowledge base with additional elements (arbitrary nodes, relationships, and

properties) relevant to cybersecurity and mission assurance in our environ-

ment. Richer knowledge supports more refined queries and specialized inter-

active visualizations.
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FIG. 17 Full graph of security posture relationships.

A
R
T
IC
L
E

IN
P
R
E
S
S



FIG. 18 Machines vulnerable across subnets and subnet memberships.
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FIG. 19 Machines with vulnerabilities exposed across subnets.
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4.1.2 Cyber Threats

In CyGraph, the cyber posture layer enumerates potentially exploitable vulner-

abilities within the network infrastructure. This forms the context for under-

standing potential cyber threats and responding to actual ones. The population

of tools such as CyGraph is greatly facilitated by standard languages for sharing

threat intelligence, including attack patterns and associated observables.

An important resource for such threat intelligence sharing is the CAPEC™,

a standardized catalog and taxonomy of attack patterns. CAPEC provides

detailed characterizations of each attack pattern and organizes the patterns into

a taxonomic hierarchy (general attack classes, their subclasses, and specific

attacks). Navigating CAPEC on the web requires following parent–child hyper-

links embedded in the textual content. This does not lend well to understanding

the overall hierarchical taxonomic structure. CyGraph tree visualization cap-

abilities help in this regard, providing a variety of interactive visualization

modalities for visualizing and navigating the CAPEC taxonomy (Noel, 2015).

The left side of Fig. 20 shows the CAPEC taxonomy. Here, nodes are

attack pattern classes and edges are parent–child relationships (with replicated

subtrees for the relatively few instances of classes with multiple parents). The

right side of the figure shows one kind of interactive tree visualization

employed by CyGraph, which has a Cartesian layout of nodes.

Other forms of tree visualization seek to maximize use of display space, e.g.,

sunburst and treemap visualizations. A type of treemap visualization in CyGraph

with particularly desirable visual properties is the Voronoi treemap (Balzer and

Deussen, 2005; Carrot Search, 2016). Fig. 21 shows a Voronoi treemap visuali-

zation for the CAPEC taxonomy. The left side of the figure is the initial view,

which has the highest-level (most general) attack classes. The analyst can then

drill down into successive levels (more specific attack classes). In this visualiza-

tion, the area of each attack class is a function of the number of its child sub-

classes, so that more populated parts of the taxonomy are emphasized.

Transparency and color muting provide some context of parent and child classes.

FIG. 20 CAPEC taxonomy of attack patterns.
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In CAPEC, each attack pattern includes the phases of attack (explore,

experiment, and exploit) comprising it, including indicators for success/failure

of each phase. This provides opportunities for understanding how each phase

of a particular attack can be detected and thwarted.

Furthermore, certain attack patterns may yield outcomes that help enable

other attack patterns, as in the example of Fig. 22. This shows interrelated

attack patterns leading to exploitation of a database. Each main box is a

CAPEC attack pattern, broken into attack phases. The CAPEC-170 pattern

(web application fingerprinting) identifies details of the target database, which

helps the attacker choose one of the three subsequent attacks leading to data-

base compromise.

Another important resource for cybersecurity analysis is STIX™, a

structured and extensible language for cyber threat intelligence. The unifying

architecture of STIX encompasses cyber threat actors; their campaigns; their

tactics, techniques, and procedures (TTPs); cyber incidents; attack indicators

and observables; attack targets; and responsive courses of action. For exam-

ple, Fig. 23 shows STIX content that describes a threat actor leveraging a

CAPEC attack pattern (phishing) to deliver a particular kind of malware

(The MITRE Corporation, 2016) as their TTPs. Another example is Fig. 24,

in which STIX describes a particular indicator (intrusion detection rule) for

data exfiltration. Particularly relevant to CyGraph models is STIX support

for chaining of attacks (The MITRE Corporation, 2016).

For managing security information and events in their network environ-

ment, security teams often rely on SIEM products. These products collect data

from a variety of sources (e.g., security devices, sensors, logs, and traffic) into

a unified framework. ArcSight’s Common Event Format (CEF) (ArcSight) is

an interoperability standard for sharing such data. For example, it is possible

to ingest STIX threat intelligence into ArcSight (via CEF) and correlate STIX

fields with security events (Murdock and Pramanik, 2004).

FIG. 21 Interactive Voronoi treemap of CAPEC taxonomy.
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FIG. 22 Relationships within and between CAPEC attack patterns.

FIG. 23 STIX threat intelligence for attacker TTPs.
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We can leverage SIEMs for populating CyGraph models, for both cyber

posture (e.g., vulnerabilities) and cyber threats (e.g., intrusion detection

alerts). Fig. 25 shows the full range of ArcSight fields, which we cast as a

directed acyclic graph for populating CyGraph. ArcSight organizes its data

model as multilevel groupings of related fields. We capture this in graph rela-

tionships, where each edge denotes membership in a group (child as member

of parent group).

FIG. 24 STIX indicator for data exfiltration.

FIG. 25 Hierarchy of ArcSight field groupings.
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When the graph elements are labeled with time (network traffic, sensors,

etc.), CyGraph can visualize graph evolution over time. When analyzing such

time-dependent graph models, often it is important to maintain focus on

recent events, so they do not become lost in the clutter of older ones. As

shown in Fig. 26, CyGraph supports this through highlighting of recent events

(edges). Here, network traffic is modeled with IP addresses as vertices, and

edges for packets between them. More recent events (edges) are given

brighter colors (nearly white), while older events are colored progressively

darker (shades of blue (gray in the print version)) and more transparent.

4.1.3 Mission Dependencies

In CyGraph, the mission dependency layer analyzes the impact of cyberattacks

on organizational functions (missions). It captures hierarchical dependencies

among mission components, down to the cyber assets that support them. In

practice, these dependencies are generally captured through manual modeling

of mission dependencies, e.g., through CJA, CyCS, or CMIA. Fig. 27 is an

example of such a mission dependency model ingested into CyGraph.

Through the mission dependencies layer of the knowledge graph, CyGraph

shows transitive (nth order) mission effects of cyberattacks. For example, a

CyGraph query can begin at the victim host of an attack and traverse the

graph forward to enumerate the mission components that depend on it,

showing impact on all effected levels of the mission dependency hierarchy.

Such a query can also include potential next attack steps, following known

vulnerability paths. A query could traverse in the opposite direction, to show

the “cyber key terrain” supported by a given mission component. Overall,

these kinds of analytic queries can tie together relationships among all layers

of the CyGraph knowledge base.

FIG. 26 Highlighting recent events in dynamically evolving graph model.
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4.1.4 Case Study

This section presents a case study that illustrates various cybersecurity ana-

lytic capabilities in CyGraph. We compare a baseline model built by the

TVA/Cauldron tool with a richer model built in CyGraph. CyGraph leverages

the TVA/Cauldron output attack graph for the cyber posture layer of its

knowledge graph. We then enrich this baseline model with intrusion detection

alerts, vulnerability data from the NVD, and attack patterns from CAPEC™.

The left side of Fig. 28 shows the network architecture for this case study.

In this architecture, the network is protected from the internet by an external

firewall. Mission-critical servers are protected by a second (internal) firewall.

There are workstations (represented by the vulnerable client machine in

Fig. 28) that have two vulnerabilities—a remote buffer overflow in a web

browser that allows arbitrary code execution, and stored credentials that can

be stolen. The database backend server has an SQL injection vulnerability that

is exploitable by an authenticated user. The Domain Name System (DNS)

server in the network DMZ is vulnerable to a cache-poisoning attack that

allows an attacker to redefine the internet address for a domain name, e.g.,

to an address under the attacker’s control.

In this scenario, the vulnerable DNS service is exposed to the internet

through the external firewall. The web client vulnerability is exposed to any

malicious service to which the client browses, and the stored credential can

be stolen by an attacker having sufficient control over this machine. The right

side of Fig. 28 shows the resulting TVA/Cauldron attack graph, built from a

FIG. 27 Hierarchy of mission dependencies on cyber assets.
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FIG. 28 Example network with TVA/Cauldron attack graph.
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specification of the network topology, firewall rules, and vulnerability scan

results. Of the four vulnerabilities reported in the scan, two are exposed to

the internet, i.e., DNS server cache poisoning and web client remote buffer

overflow. However, from its available information, the attack graph does

not show any vulnerability exposures leading into the mission-critical servers.

Fig. 29 shows a CyGraph model for this scenario. It ingests the TVA/

Cauldron attack graph, which gives machines, subnets (protection domains),

and vulnerabilities (exposed through firewalls). We then add the network

topology (connectivity among domains and firewalls), along with details

about the vulnerabilities from the NVD and associated attack patterns from

CAPEC. With the assumption that the servers are mission critical, this gives

relationships in all four of the CyGraph knowledge graph layers.

This model of potentially exploitable attack paths provides context for

responding to security events. When responding to events, queries anchored

on events of interest allow the analyst to answer specific questions about

the situation. In our scenario, an intrusion detection system (Snort) detects a

buffer overflow attack against a network client machine (the cache-poisoning

attack against the DNS server was not detected). To understand the context

for this alert, the analyst submits this (Cypher) query:

MATCH paths = (:Machine)-[:SRC]->
(:Alert {name:"Snort 33022"})-[:DETECTION]->
(:Exploit)-[:AGAINST]->
(:Vulnerability)-[:ON]->
(:Machine)

RETURN paths

A literal translation of this query is “for this alert, show me the source

(attacking) machine, and whether this alert is detection of exploitation against

a vulnerability on a machine.”

Fig. 30 is the subgraph that matches this query. This shows that the victim

of this alert does in fact have a vulnerability associated with an exploit

(CAPEC attack pattern) that the intrusion signature (Snort 33022) detects.

Here, there are additional relationships (not specified in the query) that Neo4j

includes as associated with the returned nodes, i.e., DST for the alert’s desti-

nation machine and ENABLES representing the enabling of future possible

exploitation.

Next, assume that a second alert is generated, which detects attempts at

probing a web application for potential vulnerabilities. The analyst, already

being suspicious about the first alarm (and the associated vulnerability), issues

a query to analyze how the two alerts might be related. Here is the query:

MATCH paths = (:Alert {name:"Snort 33022"})-
[:SRCjDSTjDETECTIONjONjENABLESjAGAINSTjPREPARES*]->
(:Alert {name:"Snort 1576"})

RETURN paths
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FIG. 29 Full cyber knowledge graph—ready for queries.
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This translates to “show me everything between these two alerts, using the

relationship types about alerts and vulnerability exploitation.” Here, the hori-

zontal bars represent choice of relationship type, i.e., any of the given types

will match. The asterisk at the end of the relationship types denotes traversal

over an arbitrary number of relationships of these types, i.e., arbitrarily deep.

Fig. 31 is the resulting query match. This shows that the two alerts are

indeed related, i.e., there is a chain of potential exploits linking them:

l Client-side buffer overflow against mission client.

l Lifting of database login credentials on client.

l Logging in to database from client.

l Fingerprinting to discover potential database vulnerabilities.

FIG. 30 Query showing context for an intrusion detection alert.

FIG. 31 Query showing relationships between two alerts.
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In this chain, two of the exploits are against known vulnerabilities. Just as for

missed intrusion detections, vulnerability scanners do not always find existing

vulnerabilities. In fact, in this case, the database login (after stealing the pass-

word) is essentially indistinguishable from a benign login and thus has no asso-

ciated vulnerability or alert. Still, given this query result, the analyst might

suspect that these are potentially multiple attack steps by the same threat actor.

Being concerned, the analyst might want to understand the next possible

steps that the attacker could take. Here is a query to answer that:

MATCH paths = (:Alert {name:"Snort 1576"})-
[:DSTjDETECTIONjONjENABLESjAGAINSTjPREPARES*]->()

RETURN paths

This query translates to “show me everything that can happen after the

second alert.” Again, this uses a choice of relationship types about alerts

and vulnerability exploitation, with arbitrarily deep traversal.

Fig. 32 is the subgraph match for this query. This shows that the web

application fingerprinting against the database frontend server (which was

detected) prepares for a subsequent attack against the database backend.

Exploitation of this vulnerability would let the attacker inject arbitrary SQL

commands, e.g., to steal, corrupt, or destroy mission-critical information.

At this point, the defender suspects that a malicious attack is being

launched from the client. To better understand potential response options,

the analyst poses this query:

MATCH
()-[r:ROUTES*]->(),
(:Machine {name:"1.1.2.9 (Client)"})-[i1:IN]->(),
(:Machine {name:"1.1.3.4 (Database Frontend)"})-[i2:IN]->(),
(:Machine {name:"1.1.3.5 (Database Backend)"})-[i3:IN]->()

RETURN r, i1, i2, i3

FIG. 32 Query showing potential mission impact.
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This translates to “show me the network topology, and how these three

machines (client and two servers) connect to it.”

Fig. 33 is the resulting query match. This shows that the internal firewall is

in position to block traffic from the suspicious client to the mission-critical

servers. Also, based on the correlation with the initial alert (client-side buffer

overflow), the defender suspects that the network client is being controlled

from the outside. For that, blocking via the external firewall is an option.

After the attack is thwarted, the defender wants to better understand how

the attacker might have gained entry into the network. The defender poses this

query:

MATCH paths = ()-[:PREPARESjONjENABLESjAGAINST*]->
()-[:PREPARES]->
(:Exploit)-[:DETECTION]->
(:Alert {name:"Snort 1576"})

RETURN paths

This translates to “show me all paths (of arbitrary depth) using relationship

types about alerts and vulnerability exploitation (ignoring alert source/

destination machines) that lead to an exploit detected by the initial alert.”

Fig. 34 is the resulting query match. This suggests the cache-poisoning

vulnerability as a likely precursor to the buffer overflow attack on the client,

even though the cache-poisoning attack was not itself detected.

4.2 Cyber Modeling and Simulation

CyGraph can not only build a knowledge base from real network and threat

data, but it can also be driven by simulations and perform model synthesis.

Section 4.2.1 examines a CyGraph RESTful web service that visualizes

FIG. 33 Query showing potential firewall-blocking responses.
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dynamic graph state changes. Section 4.2.2 applies CyGraph to the generation

of node attributes for cyber graph models.

4.2.1 Simulation-Driven Visualizations

CyGraph includes a RESTful web service that visualizes dynamic state

changes in graph models, e.g., driven by simulations. For example, Fig. 35

shows a process flow model for a multistep attack against a database, which

FIG. 34 Query discovering initial source of attack.

FIG. 35 Process flow model for simulation-driven analytics.
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is modeled in terms of CAPEC attack patterns. This is modeled in iGrafx

(Object Management Group, 2011), a tool that combines Business Process

Model and Notation (BPMN) (iGrafx, 2016) and discrete event simulation.

Such models are hierarchical, with high-level processes decomposed into

lower-level process flows. In Fig. 35, the highest-level flow is a sequence of

CAPEC attack pattern executions. Each attack pattern is decomposed into

the explore/experiment/exploit phases defined by CAPEC, which are in turn

decomposed into the detailed steps for carrying out each attack phase.

For sufficient realism, process models of cyberattacks need to be coupled

with models of the network environment and security posture. For example,

particular attack classes are only successful against certain classes of vulnerabil-

ities, and firewall policies control attacker access. These kinds of vulnerability/

attack conditions differ for every network and are continually evolving. They

should be captured and managed by automated tools such as CyGraph.

This kind of hybrid modeling for cyber and mission interactions was

explored in the AMICA project (Analyzing Mission Impacts of Cyber

Actions) (Noel et al., 2015). AMICA captures behavior (process models) for

mission operations and cyber (attacker and defender) activities, for high-

fidelity understanding and measurement of mission impact. AMICA leverages

CyGraph for knowledge management, automated model building, and visual-

ization of environmental constraints (network topology, attack graph, mission

dependencies, etc.) and dynamic state changes under simulation runs.

In AMICA, the iGrafx simulation engine follows the time and resource-

constrained process model for mission and cyber threads. It tests cyber envi-

ronmental constraints as needed in the process flows, updating them whenever

process tasks (i.e., for cyber attacker and defender) change environmental

conditions. Throughout the entire process, CyGraph shows the dynamic state

evolution of the network environment through animated visualization.

Fig. 36 is an example of CyGraph visualization driven by simulations.

This shows visualizations for two simulation runs, with different firewall pol-

icy rules for each run. In this scenario, firewall rules enforce access for an

internal network and an external partner network. Policy 1 is coarse grained,

allowing only mission-required access across the partner network domains,

but within each domain (internal and partner) allowing fully connected access

(even among machines that do not need to communicate for the mission). Pol-

icy 2 is more fine grained. The internal and partner networks are each divided

into multiple domains, and only mission-required access provided across each

of the smaller domains. In the scenario, the attacker starts at a particular host

machine in the partner network and follows a shortest path to reach a critical

database server.

In Fig. 36, the attack graph layer (left column) shows potentially

exploitable paths of vulnerability from machine to machine. The network

topology layer (right column) shows the underlying connectivity among hosts,

switches, routers, and firewalls. The attack graphs have edges highlighted
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representing paths of actual (simulated) exploitation, with the victim

machines highlighted. The network topologies have these same victims high-

lighted. For the network topologies, each attack step (from one machine to

another) involves multiple edges of the topology. Topology routes are gener-

ally shared over multiple attack steps, so that edge highlighting for multiple

attack steps is not effective for topology graphs.

As shown in Fig. 36, the simplistic coarse granularity of Policy 1 allows

the attacker to reach the target database service in only two attack steps.

On the other hand, the more fine-grained (complex) and restrictive Policy

2 forces the adversary to attack nine hosts to compromise the target.

While not shown in this example, the state changes portrayed in CyGraph

can be driven by both attacker and defender. For example, defender process

flows can update the state of hosts and vulnerability exposures in response

to attacks. In this way, the dynamic interplay of attackers and defenders under

FIG. 36 CyGraph visualization driven by simulations.
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simulation can be more deeply understood. Fig. 37 is an example of this.

Here, the attacker is following a path of exploitation across the network.

For each attack step, there is some probability that the attack is detected

and thwarted by the defender. The figure shows simulation runs for two dif-

ferent defense-success probabilities, i.e., 25% and 75% (left and right sides

of Fig. 37, respectively).

4.2.2 Cyber Model Synthesis

There are numerous practical reasons for the automatic generation of cyber

graph models, e.g., for scalability testing or to avoid divulging sensitive real

network data. There has been considerable progress in understanding the gen-

eral laws and distinguishing characteristics of real-world graphs, for synthe-

sizing graphs that are more realistic (Chakrabarti and Faloutsos, 2006).

These generally focus on collective properties of graph nodes and edges, such

as distribution of node degree, graph diameter, and community (clustering)

structure. Thus, we can leverage established models for generating graphs

(nodes and edges) themselves.

However, practical graph models also include various attributes for the

nodes and edges in the model. For example, machines (nodes) in a network

graph might include attributes such as numbers of vulnerabilities for each

machine. We postulate that such attributes generally follow power-law distri-

butions, in which the spectral density (data variance distributed over the fre-

quency domain) varies inversely with frequency, known as 1/f models. Such

distributions have been observed in many phenomenon (Wikipedia, 2016).

One interpretation is a kind of preferential attachment in which some resource

(e.g., vulnerabilities) are distributed among entities (e.g., machines) according

to how many they already have—a kind of “like attracts like” argument

(Merton, 1968). Another interpretation is a kind of stochastic noise process

associated with a nonequilibrium system, subject to change driven by a flux

of influences to/from other systems (Wikipedia, 2016).

FIG. 37 Simulated interplay of cyber attacks and defenses.
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In particular, we generate attribute values for nodes through pseudo-

random noise, which has power-law distribution over a graph’s spatial layout.

This noise is two-dimensional (spatial), with a spectral density that varies

inversely with spatial frequency. Such 1/f noise is also known as “pink noise”

(Halley and Kunin, 1999), because of its color association with light spectra.

It is intermediate between a purely random process having no memory of past

values (“white noise”) and random-walk processes that are dominated by their

recent history (“brown noise”).

We employ a typical approach for generating 1/f pink noise, which

“reddens” white noise through a process of autoregression (smoothing). This

is low-pass spatial filtering that reduces the higher-frequency components of

the white noise (which itself contains equal amounts of all spatial frequen-

cies). For white noise, the individual noise values are independent, i.e., uncor-

related over space. Pink noise varies more smoothly, so that nearby points are

more correlated.

When we apply such 1/f (pink) noise distributions to generated graphs,

nearby nodes are more likely to have similar attribute values, i.e., there is

local correlation. For example, nearby nodes in a network structure might

be more likely to be managed in a similar way, and thus have similar numbers

of vulnerabilities. In rendering such discretized noise fields (two-dimensional

arrays), we map noise values to display colors.

For generating pseudo-random 1/f spatial (two-dimensional) noise in

CyGraph, we follow an established process (Vandevenne, 2004). We first cre-

ate a two-dimensional array of random (white) noise values. We then apply

linear interpolation as a smoothing process. This is done over multiple spatial

scales (spatial frequencies), by successively varying the scale over which the

smoothing is applied. This yields versions of the white noise smoothed at var-

ious scales, which we combine over all scales.

By controlling the relative contributions of smoothed noise at each scale,

we obtain noise with different statistical distributions, as shown in Fig. 38.

Noise signals with more smoothing (fewer high-frequency components) have

stronger correlation among nearby values. For cyber graph models, this

FIG. 38 Controlling variation in generated attribute values.
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corresponds to environments with less variation in attribute values (e.g., vul-

nerabilities on machines).

Once we generate two-dimensional (spatial) 1/f noise with given statistical

properties, we map the resulting noise array to a CyGraph model. In particu-

lar, we align the two-dimensional array of attribute values over a visualized

graph, as shown in Fig. 39. The spatial coordinates of the graph nodes (e.g.,

network machines) are assigned attribute values (e.g., number of vulnerabil-

ities) based on corresponding locations in the two-dimensional attribute

(noise) array. The array values are not “noise” in the usual sense of unwanted

contamination of a desired signal. Rather, they are the signal (node attribute)

values themselves, as a model that is stochastic but still has locally correlated

values (nearby nodes have similar attribute values).

In Fig. 39, the attribute values (two-dimensional 1/f noise array) are

mapped to a color palette that helps distinguish noise values as bands of col-

ors. The graph nodes are given the corresponding colors as projected from the

noise array. The display also renders graph edges as the average of their end-

point node colors, to portray a visual transition.

5 SUMMARY

CyGraph is a flexible approach for dynamic cyber graph analytics and inter-

active visualization. It provides a graph knowledge base about attack vulner-

ability, threat indicators, and mission dependencies within a network

environment. CyGraph builds a predictive model of possible attack paths

and critical vulnerabilities and correlates network events to known vulnerabil-

ity paths. It also includes dependencies among mission requirements and net-

work assets, for analysis in the context of mission assurance. CyGraph has an

open, extensible data model based on a layered property-graph formulation,

which makes it easy to extend.

CyGraph brings together isolated data and events into an ongoing overall

picture for decision support and situational awareness. It prioritizes exposed

FIG. 39 Mapping correlated attribute values to graph nodes.
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vulnerabilities, mapped to potential threats, in the context of mission-critical

assets. In the face of actual attacks, it correlates intrusion alerts to known vul-

nerability paths, and suggests best courses of action for responding to attacks.

For postattack forensics, it shows vulnerable paths that may warrant deeper

inspection.

CyGraph incorporates an attack graph model that maps the potential attack

paths through a network. This includes any network attributes that potentially

contribute to attack success, such as network topology, firewall rules, host

configurations, and vulnerabilities. The dynamically evolving attack graph

provides context for reacting appropriately to attacks and protecting mission-

critical assets. CyGraph then ingests network events such as intrusion detec-

tion alerts and other sensor outputs, including packet capture. It also incorpo-

rates mission dependencies, showing how mission objectives, tasks, and

information depend on cyber assets.

For building its graph knowledge base, CyGraph leverages a number of

standards under Making Security Measurable™, a suite of standardization

initiatives being developed by MITRE and others in the cybersecurity com-

munity. These provide standard languages for a variety of input data sources

for building CyGraph knowledge graphs, particularly STIX™ (Structured

Threat Information eXpression), CAPEC™, and content in the NVD.

In the CyGraph architecture, the data model is based on a flexible

property-graph formulation. This model is free to evolve with the available

data sources and desired analytics, rather than being fixed at design time.

The backend database is implemented in Neo4j, a NoSQL database optimized

for graphs. This represents node adjacency via direct pointers, avoiding

expensive join operations for graph traversal. It allows CyGraph to take

advantage of database technology with graph traversal performance orders

of magnitude better than relational databases. Query execution times depend

only on the size of the traversed subgraph, independent of the size of the

overall graph.

In CyGraph, RESTful web services provide interfaces for data ingest, ana-

lytics, and visualization. Data in the wild are mapped to the common CyGraph

data model. The domain-specific CyQL supports flexible ad hoc queries

against the CyGraph data model. The middle-tier CyGraph Service then com-

piles CyQL into lower-level native graph query language (Cypher for Neo4j).

CyGraph provides a variety of clients for specialized analytic and visual

capabilities of query results, including dynamic graph evolution, layering,

grouping/filtering, and hierarchical views.

CyGraph has the potential to greatly reduce effort (e.g., within enter-

prise security operations centers) for prevention and response of cyberat-

tacks, provide situational awareness, and assure missions. Existing tools

for attack graph analysis employ specialized data structures and algo-

rithms designed for solving specific problems, e.g., attack reachability or

network hardening. Flexibility and extensibility in the face of dynamically
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evolving network environments and threats have not been first-class

design criteria.

Overall, CyGraph introduces a novel unified data model that captures

complex relationships among cyber security elements (network topology, fire-

walls, hosts, vulnerabilities, etc.), threat indicators (intrusion detection alerts,

log file entries, suspicious traffic, etc.), and mission dependencies on cyber

assets. This allows security operators to better understand the full scope of

adversary activities, the relevance to known network vulnerability paths,

and the potential impact to specific missions.

ACKNOWLEDGMENTS

This work was funded in part by the MITRE Innovation Program (project number EPF-14-

00341), with Vipin Swarup as Cyber Security Innovation Area Leader. We wish to thank

Bill Chan of MITRE for providing the architecture diagram for CAVE.

REFERENCES

Albanese, M., Jajodia, S., Noel, S., 2012. Time-efficient and cost-effective network hardening

using attack graphs. In: Proceedings of the 42nd Annual IEEE/IFIP International Conference

on Dependable Systems and Networks.

Amazon Web Services. AWS Management Portal for vCenter, 2016. https://aws.amazon.com/ec2/

vcenter-portal/.

Andlinger, P., 2015. Graph DBMS Increased Their Popularity by 500% Within the Last 2 Years.

http://db-engines.com/en/blog_post/43.

Angles, R., Gutierrez, C., 2008. Survey of graph database models. ACM Comput. Surv. 40 (1),

1–39.

ArcSight. ArcSight Publishes Open Standard Designed to Improve the Interoperability of Security

and Compliance Systems. http://www.marketwired.com/press-release/arcsight-publishes-

open-standard-designed-improve-interoperability-security-compliance-697462.htm.

Artz, M., 2002. NetSPA: A Network Security Planning Architecture. Master’s thesis,

Massachusetts Institute of Technology.

Baas, B., 2012. NoSQL spatial—Neo4j versus PostGIS. Master’s thesis, Delft University of

Technology.

Balzer, M., Deussen, O., 2005. Voronoi treemaps. In: Proceedings of the IEEE Symposium on

Information Visualization.

Batra, S., Tyagi, C., 2012. Comparative analysis of relational and graph databases. Int. J. Softw.

Eng. Soft Comput. 2, 509–512.

Bostock, M., Ogievetsky, V., Heer, J., 2011. D3: data-driven documents. IEEE Trans. Vis. Com-

put. Graph. 17 (12), 2301–2309.

Carrot Search. FoamTree: Interactive Voronoi Treemaps, 2016. http://carrotsearch.com/foamtree-

overview.

Chakrabarti, D., Faloutsos, C., 2006. Graph mining: laws, generators, and algorithms. ACM Com-

put. Surv. 38, 1–69.

Cray. Urika-GD Product Brief, 2014. http://www.cray.com/sites/default/files/resources/Urika-

GD%20Product%20Brief%20Online%205-page.pdf.

48 Handbook of Statistics

ARTICLE IN PRESS

http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0005
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0005
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0005
https://aws.amazon.com/ec2/vcenter-portal/
https://aws.amazon.com/ec2/vcenter-portal/
http://db-engines.com/en/blog_post/43
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0015
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0015
http://www.marketwired.com/press-release/arcsight-publishes-open-standard-designed-improve-interoperability-security-compliance-697462.htm
http://www.marketwired.com/press-release/arcsight-publishes-open-standard-designed-improve-interoperability-security-compliance-697462.htm
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0020
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0020
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0025
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0025
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0030
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0030
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0035
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0035
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0040
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0040
http://carrotsearch.com/foamtree-overview
http://carrotsearch.com/foamtree-overview
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0045
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0045
http://www.cray.com/sites/default/files/resources/Urika-GD%20Product%20Brief%20Online%205-page.pdf
http://www.cray.com/sites/default/files/resources/Urika-GD%20Product%20Brief%20Online%205-page.pdf


CyberAnalytix takes a 7-Year Path to $100 K, 2008. http://www.bizjournals.com/boston/blog/

mass-high-tech/2008/05/cyberanalytix-takes-a-7-year-path-to-100k.html.

DB-Engines, 2015. DB-Engines Ranking—Trend of Graph DBMS Popularity. http://db-engines.

com/en/ranking_trend/graph+dbms, March 2015.

Dutot, A., Guinand, F., Olivier, D., Pign�e, Y., 2007. GraphStream: a tool for bridging the Gap

between complex systems and dynamic graphs. In: Proceedings of the Emergent Properties

in Natural and Artificial Complex Systems.

Graphviz—Graph Visualization Software. http://www.graphviz.org/.

Gudivada, V., Rao, D., Raghavan, V.V., 2016. Renaissance in database management: navigating

the landscape of candidate systems. IEEE Comput. 49 (4), 31–42.

Gulabani, S., 2014. Developing RESTful Web Services with Jersey 2.0. Packt Publishing,

Birmingham, UK.

Halley, J., Kunin, W., 1999. Extinction risk and the 1/f family of noise models. Theor. Popul.

Biol. 56 (3), 215–230.

Harper, R., 2013. There Is Such a Thing as a Declarative Language, and It’s the World’s

Best DSL. https://existentialtype.wordpress.com/2013/07/22/there-is-such-a-thing-as-a-declarative-

language/.

Harris, E., Perlroth, N., 2014. Target missed signs of a data breach. The New York Times. http://

www.nytimes.com/2014/03/14/business/target-missed-signs-of-a-data-breach.html.

Iannacone, M., Bohn, S., Nakamura, G., Gerth, J., Huffer, K., Bridges, R., Ferragut, E.,

Goodall, J., 2014. Developing an ontology for cyber security knowledge graphs.

In: Proceedings of the 9th Annual Cyber and Information Security Research Conference.

iGrafx, 2016. http://www.igrafx.com/.

Information Technology—Syntactic Metalanguage—Extended BNF, 1996. International Standard

ISO/IEC 14977:1996(E).

Ingols, K., Lippmann, R., Piwowarski, K., 2006. Practical attack graph generation for network

defense. In: Proceedings of the 22nd Annual Computer Security Applications Conference.

Jajodia, S., Noel, S., O’Berry, B., 2005. Topological analysis of network attack vulnerability.

In: Kumar, V., Srivastava, J., Lazarevic, A. (Eds.), Managing Cyber Threats: Issues,

Approaches and Challenges. Springer, Berlin, Germany.

Jajodia, S., Noel, S., Kalapa, P., Albanese, M., Williams, J., 2011. Cauldron: mission-centric

cyber situational awareness with defense in depth. In: Proceedings of the 30th Military Com-

munications Conference.

Lippmann, R., Ingols, K., 2005. An annotated review of past papers on attack graphs. Technical

report, MIT Lincoln Laboratory.

Martin, R., 2008. Making security measurable and manageable. In: MILCOM 2008—2008 IEEE

Military Communications Conference, 16–19 Nov., pp. 1–9, San Diego, CA.

Merton, R., 1968. The Matthew effect in science. Science 159 (3810), 56–63.

Murdock, J., Pramanik, S., 2004. Correlating Advanced Threat Information Feeds. HP Protect.

Musman, S., Tanner, M., Temin, A., Elsaesser, E., Loren, L., 2011. Computing the impact of

cyber attacks on complex missions. In: Proceedings of the IEEE International Systems

Conference.

Nadkarni, A., Vesset, D., 2014. Worldwide Big Data Technology and Services 2014–2018 Fore-

cast. International Data Corporation. IDC #250458.

National Vulnerability Database, 2016. https://nvd.nist.gov/.

Neo4j, 2016. http://neo4j.com/.

Ning, P., Xu, D., 2004. Hypothesizing and reasoning about attacks missed by intrusion detection

systems. ACM Trans. Inform. Syst. Secur. 7, 591–627.

CyGraph: Graph-Based Analytics and Visualization for Cybersecurity 49

ARTICLE IN PRESS

http://www.bizjournals.com/boston/blog/mass-high-tech/2008/05/cyberanalytix-takes-a-7-year-path-to-100k.html
http://www.bizjournals.com/boston/blog/mass-high-tech/2008/05/cyberanalytix-takes-a-7-year-path-to-100k.html
http://db-engines.com/en/ranking_trend/graph+dbms
http://db-engines.com/en/ranking_trend/graph+dbms
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0055
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0055
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0055
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0055
http://www.graphviz.org/
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0060
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0060
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0065
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0065
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0070
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0070
https://existentialtype.wordpress.com/2013/07/22/there-is-such-a-thing-as-a-declarative-language/
https://existentialtype.wordpress.com/2013/07/22/there-is-such-a-thing-as-a-declarative-language/
http://www.nytimes.com/2014/03/14/business/target-missed-signs-of-a-data-breach.html
http://www.nytimes.com/2014/03/14/business/target-missed-signs-of-a-data-breach.html
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0085
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0085
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0085
http://www.igrafx.com/
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0090
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0090
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0095
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0095
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0095
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0100
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0100
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0100
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0105
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0105
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0110
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0110
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0115
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0120
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0125
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0125
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0125
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0130
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0130
https://nvd.nist.gov/
http://neo4j.com/
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0135
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0135


Noel, S., 2015. Interactive visualization and text mining for the CAPEC cyber attack catalog.

In: Proceedings of the ACM Intelligent User Interfaces Workshop on Visual Text Analytics.

Noel, S., Heinbockel, W., 2015. An overview of MITRE cyber situational awareness solutions.

In: Proceedings of the NATO Cyber Defence Situational Awareness Solutions Conference.

Noel, S., Jajodia, S., 2007. Attack graphs for sensor placement, alert prioritization, and attack

response. In: Proceedings of the Air Force Cyberspace Symposium.

Noel, S., Jajodia, J., 2009a. Attack Graph Aggregation. US Patent 7,627,900.

Noel, S., Jajodia, S., 2009b. Advanced vulnerability analysis and intrusion detection through pre-

dictive attack graphs. In: Proceedings of the Armed Forces Communications and Electronics

Association Critical Issues in C4I.

Noel, S., Jajodia, S., 2014. Metrics suite for network attack graph analytics. In: Proceedings of the

9th Annual Cyber and Information Security Research Conference.

Noel, S., O’Berry, B., Hutchinson, C., Jajodia, S., Keuthan, L., Nguyen, A., 2002. Combinatorial

analysis of network security. In: Proceedings of the 16th Annual International Symposium on

Aerospace/Defense Sensing, Simulation, and Controls.

Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., Prole, K., 2009. Advances in topological

vulnerability analysis. In: Proceedings of the Cybersecurity Applications & Technology Con-

ference for Homeland Security.

Noel, S., Ludwig, J., Jain, P., Johnson, D., Thomas, R.K., McFarland, J., King, B., Webster, S.,

Tello, B., 2015. Analyzing mission impacts of cyber actions (AMICA). In: NATO Workshop

on Cyber Attack Detection, Forensics and Attribution for Assessment of Mission Impact.

NSA-Funded ‘Cauldron’ Tool Goes Commercial, 2009. http://www.darkreading.com/nsa-funded-

cauldron-tool-goes-commercial/d/d-id1131178.

O’Hare, S., Noel, S., Prole, K., 2008. A graph-theoretic visualization approach to network risk

analysis. In: Proceedings of the Workshop on Visualization for Computer Security.

Object Management Group. Documents Associated with Business Process Model and Notation

(BPMN) Version 2.0, 2011. http://www.omg.org/spec/BPMN/2.0/.

Ou, X., Govindavajhala, S., Appel, A., 2005. MulVAL: A Logic-Based Network Security Ana-

lyzer. In: Proceedings of the 14th USENIX Security Symposium.

Parr, T., 2013. The Definitive ANTLR 4 Reference. The Pragmatic Programmers.

RedSeal Networks, 2016. http://www.redsealnetworks.com/.

Ritchey, R., O’Berry, B., Noel, S., 2002. Representing TCP/IP connectivity for topological anal-

ysis of network security. In: Proceedings of the 18th Annual Computer Security Applications

Conference.

Robinson, I., Webber, J., Eifrem, E., 2015. Graph Databases, second ed. O’Reilly, Sebastopol,

CA.

Sanders, C., 2011. Practical Packet Analysis—Using Wireshark to Solve Real-World Problems,

second ed. No Starch Press, San Francisco, CA.

Schweitzer, P., 2013. Attack–Defense Trees. Doctoral dissertation, University of Luxembourg.

Sheyner, O., Wing, J., 2004. Tools for generating and analyzing attack graphs. In: Proceedings of

the Workshop on Formal Methods for Components and Objects.

Skybox. Risk Analytics for Cyber Security Management, 2016. http://www.skyboxsecurity.com/.

Structured Threat Information eXpression (STIX™)—A Structured Language for Cyber Threat

Intelligence, 2016. https://stixproject.github.io/.

The MITRE Corporation. Making Security Measurable, 2013. http://makingsecuritymeasurable.

mitre.org/.

The MITRE Corporation. Making Security Measurable—Directory of Efforts by Organization

Name, 2014. http://makingsecuritymeasurable.mitre.org/directory/organizations/index.html.

50 Handbook of Statistics

ARTICLE IN PRESS

http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0140
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0140
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0145
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0145
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0150
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0150
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0155
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0155
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0155
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0160
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0160
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0165
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0165
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0165
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0170
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0170
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0170
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0175
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0175
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0175
http://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id1131178
http://www.darkreading.com/nsa-funded-cauldron-tool-goes-commercial/d/d-id1131178
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0180
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0180
http://www.omg.org/spec/BPMN/2.0/
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0185
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0185
http://www.redsealnetworks.com/
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0190
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0190
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0190
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0195
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0195
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0200
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0200
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0205
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0210
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0210
http://www.skyboxsecurity.com/
https://stixproject.github.io/
http://makingsecuritymeasurable.mitre.org/
http://makingsecuritymeasurable.mitre.org/
http://makingsecuritymeasurable.mitre.org/directory/organizations/index.html


The MITRE Corporation. The Common Attack Pattern Enumeration and Classification—A Com-

munity Resource for Identifying and Understanding Attacks, 2016. https://capec.mitre.org/.

The MITRE Corporation. Crown Jewels Analysis, 2009. http://www.mitre.org/publications/

systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/

crown-jewels-analysis.

The MITRE Corporation. Cyber Command System (CyCS), 2016. http://www.mitre.org/research/

technology-transfer/technology-licensing/cyber-command-system-cycs.

The MITRE Corporation. Threat Actor Leveraging Attack Patterns and Malware, 2016. http://

stixproject.github.io/documentation/idioms/leveraged-ttp/.

The MITRE Corporation. Kill Chains in STIX, 2016. http://stixproject.github.io/documentation/

idioms/kill-chain/.

Vandevenne, L. Texture Generation using Random Noise, 2004. http://lodev.org/cgtutor/

randomnoise.html.

vis.js—A Dynamic, Browser-Based Visualization Library, 2016. http://visjs.org/.

VMware. VMware Virtualization for Desktop & Server, Application, Public & Hybrid Clouds,

2016. http://www.vmware.com/.

Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., Partner, J., 2015. Neo4j in Action. Manning

Publications, Shelter Island, NY.

Wang, L., Yao, C., Singhal, A., Jajodia, S., 2006. Interactive analysis of attack graphs using rela-

tional queries. In: Damiani, E., Liu, P. (Eds.), Data and Applications Security XX. Lecture

Notes in Computer Science. vol. 4127. Springer Berlin Heidelberg, Sophia Antipolis, France.

Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S., 2013. k-zero Day safety: a network secu-

rity metric for measuring the risk of unknown vulnerabilities. IEEE Trans. Depend. Secure

Comput. 11, 30–44.

Wikipedia. Power Law, 2016. https://en.wikipedia.org/wiki/Power_law.

Wikipedia. Non-Equilibrium Thermodynamics, 2016. https://en.wikipedia.org/wiki/Non-

equilibrium_thermodynamics.

Wynn, J., Whitmore, J., Upton, G., Spriggs, L., McKinnon, D., McInnes, R., Graubart, R.,

Clausen, L., 2011. Threat assessment & remediation analysis (TARA): methodology descrip-

tion version 1.0. MITRE Technical report MTR110176.

Yates, C., Ladd, S., Devijver, S., 2006. Expert Spring MVC and Web Flow (Expert’s Voice in Java).

Apress, New York City.

Zadrozny, P., Kodali, R., 2013. Big Data Analytics Using Splunk. Apress, New York City.

CyGraph: Graph-Based Analytics and Visualization for Cybersecurity 51

ARTICLE IN PRESS

https://capec.mitre.org/
http://www.mitre.org/publications/systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis
http://www.mitre.org/publications/systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis
http://www.mitre.org/publications/systems-engineering-guide/enterprise-engineering/systems-engineering-for-mission-assurance/crown-jewels-analysis
http://www.mitre.org/research/technology-transfer/technology-licensing/cyber-command-system-cycs
http://www.mitre.org/research/technology-transfer/technology-licensing/cyber-command-system-cycs
http://stixproject.github.io/documentation/idioms/leveraged-ttp/
http://stixproject.github.io/documentation/idioms/leveraged-ttp/
http://stixproject.github.io/documentation/idioms/kill-chain/
http://stixproject.github.io/documentation/idioms/kill-chain/
http://lodev.org/cgtutor/randomnoise.html
http://lodev.org/cgtutor/randomnoise.html
http://visjs.org/
http://www.vmware.com/
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0215
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0215
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0220
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0220
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0220
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0225
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0225
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0225
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Non-equilibrium_thermodynamics
https://en.wikipedia.org/wiki/Non-equilibrium_thermodynamics
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0230
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0230
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0230
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0235
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0235
http://refhub.elsevier.com/S0169-7161(16)30042-6/rf0240

	CyGraph: Graph-Based Analytics and Visualization for Cybersecurity
	Introduction
	Related Work
	Description of CyGraph
	CyGraph Architecture
	CyGraph Data Sources
	Big Data Analytics in CyGraph
	CyGraph Client-Server
	CyQL: CyGraph Domain-Specific Query Language
	Description of CyQL
	Example CyQL Queries

	CyGraph Interactive Visualization

	Example Applications
	Cyber Analytics
	Network Infrastructure and Cyber Posture
	Cyber Threats
	Mission Dependencies
	Case Study

	Cyber Modeling and Simulation
	Simulation-Driven Visualizations
	Cyber Model Synthesis


	Summary
	Acknowledgments
	References




